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Analysis of Certain Transmission-Line

Networks in the Time Domain*

W. J. GETSINGERf

Summary—Many linear components in nondispersive transmis- ods to be described later) as an infinite series of the form
sion line are made up solely of commensurate lengths of line of vari-

ous characteristic impedances. Such components have impulse re-

sponses that are a series of equispaced impulses, and, as a result,

their frequency responses can be written as a Fourier series. Given

the period and coefficients of the Fourier series describing the
frequency response, the time response of the circuit to any pulse can

be written down immediately as a sum of replicas of the applied pulse,

each replica having an amplitude given by the coefficient of a term in
the series, and occurring at a time determined by the period of that
term of the series.

The pulse responses of stepped transmission-line transformers,

backward-coupling hybrids, and branch-line hybrids are determined

and, after assuming a simple applied-puke shape, are plotted.

INTRODUCTION

T
HE use of millimicrosecond pulses requires com-

ponent bandwidths that can be achieved only in

the microwave frequency range. Since the usual

problem is to keep pulse distortion as small as possible,

nondispersive transmission lines, such as coaxial and

strip transmission lines, have an advantage over dis-

persive lines, such as waveguide.

Many useful TEM transmission-line components con-

tain no frequency-sensitive elements other than lengths

of line, When a network has these properties, its re-

sponses to an applied pulse of any shape can be deter-

mined by making an arithmetic summation of replicas

of the applied pulse, each differing from the next only

in amplitude and displacement in time. This process

avoids the difficulty of integrating with each applied-

pulse shape separately to determine the response.

lWETHOD OF ANALYSIS

Given a network of steady-state frequency response

j(o), and an input pulse, expressed in time as g(t), it is

desired to find the output pulse G(t) from the net-

work.’–4 If the network is made up entirely of com-

mensurate lengths of nondispersive transmission lines,

its frequency response f(a) can be expanded (by meth-
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(1)
n-o

where bd is a coefficient specifying magnitude, u is

radian frequency, and T is a specific tinne interval de-

pending on the particular microwave component being

analyzed. The Fourier integral,

j“(f) = J ~ J’(co)e’”’da, (2)
—m

where t is time, can be used to transform ~(u) into the

time domain. When (2) is applied to (1), the result is

j-(i) = 5 Zrna(i – ?’rT) (3)
*=O

where d(t —nT) is a unit impulse occurring at time

t= nT. This is the network impulse response, and is seen

to consist of a series of impulses. The response G(t) of the

network to an applied pulse g(t) is found by convolving

~(t) and g(t). Convolution is described by

s

t

G(t) == g(o)f(f – e)do = g(t) * j(t) (4)
o

where G(t) is the network response, and O is merely a

variable of integration. The lower limit is zero because

the input pulse g(t) is assumed to be zero before t =0.

Substituting (3) into (4) gives the response of the

network to g(t) as

G(t) = bog(t) + b,g(t – T) + bag(t – 2T) + .0 “ (.S)

because convolution with an impulse yielcls a replica of

the given function.

Comparison of (5) with (1) shows that if the factor T

and the coefficients b~ of the frequency response of the

network are known, then the response of the network to

any pulse can be written down immecfiately as a series

of replicas of the applied pulse.

The frequency response of a network is usually given

in closed form, and it is necessary to expand i t in order to

find the pulse response. The frequency response (1) is

periodic with a period 27r/ T, and its real part is an even

function; thus, the real part of the given frequency re-

sponse can be expanded in a Fourier series as

Rej(o) = bo + bl cos UT + bz cos 21-OT-/- . ~ (6)

by well-known analytical or numerical methods. The

coefficients b~ in (6) may be identified with those in (5),

so that the pulse response of the network is known upon
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expanding only the real part of its frequency response. From the preceding section, the reflected response to

Real-part sufficiency is discussed extensively by Guil- any applied pulse can be written immediately as

lemin}

Another method of determining the coefficients to be G,(t) = ~ p~g[t – 2(k – I) T]. (8)

used in (5) is by replacing each e–jWT by { in the given k=l

frequency response, and expanding the function in a Let
power series in .(_about f = O, using any of the available

methods for determining power series coefficients. The g(t) = e(t) sin coot (9)

coefficients of the power series are the same as those of and
the Fourier series for the same values of n, as can be de-

termined by replacing each f in the series with e+ ~ COOT = 7r/2 (lo)

when the expansion has been made. The substitution is
where e(t) is the time description of the pulse envelope,

possible because the networks being considered involve
and tio is the carrier radian frequency. Also,

only commensurate lengths of nondispersive transmis-

sion line as frequency-sensitive elements, and thus the

independent variable can be considered to be (e–~”’)
sin(ut-+) = -COScoOi!

rather than co.
sin (LOOt — r) = — sin coot

PULSE RESPONSE OF STEPPED TRANSFORMERS

A properly designed, stepped, transmission-line trans- ‘in(wo’ -:) = C“swo’

former6 provides a means of joining two transmission sin (oJot — 27r) = sin coot. (11)

lines of greatly different characteristic impedances

without incurring a large mismatch. A diagram of the

general step transformer to be discussed is given in Fig.
i

1, Assumptions made are that the transmission line is ~.,,,.x

nondispersive, that junction effects can be ignored,

that the physical distance between adjacent steps is the

same for all steps, and that the electrical distance be- I---

%
‘,,,,

tween adj scent steps is one-quarter wavelength at the

carrier frequency of the applied pulse.

DETERMINATION OF REFLECTED RESPONSE

The time-domain reflected-response characteristic of

the step transformer will be determined by applying a

unit impulse at Step 1 and obtaining the impulse re-

sponse directly. Practical step transformers are usually

well matched, and the reflections from the individual

steps are relatively small, so that for the reflected re-

sponse, signal level can be considered to be the same at

each step, and multiple reflections can be ignored. Sup-

pose a unit impulse reaches the first step at t = O. There

is an immediate reflection at that step. If the time re-

quired for the impulse to advance from one step to the

next is called T, the reflection from the kth step reaches

the first step when t = 2k T. The amplitude of each re-

sponse is the voltage reflection factor pk of that particu-

lar step. Thus, the reflected impulse response from all n

steps can be written as

j,($ = ~ /J~8[t – 2(k – I) T]. (7)
lc=l

5 E. A. Guillemin, “Computational Techniques which Simplify
the Correlation Between Steady-State and Transient Response of
Filters and Other Networks, ” Proc. Natl. Electronics Conf., Chicago,
Hi., pp. 513-532; 1953.

s S. B. Cohn, “Optimum design of stepped transmission-line
transformers. ” IRE TRANS. ONMICROWAVE THEORY ANDTECHNIQUES..,
vol. MTT-3, ‘pp. 16–21; April, 1955.

,,

Fig. l—The stepped transmission-line transformer.
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Fig. 2—Response of four-step stepped transmission-line
transformer to applied-rectangular pulse.
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Substitution of (9)–(11) into (8) gives

{ }
G,(t) = sin uot ~ (– 1)’+’pke[t – 2(Iz – l)T] . (12)

k-l

Expanding for clarity, this becomes

G,(t) = sin @~ple(t) – p,e(t – 2T) + p~e(t – 4T) – ..0

+ p.e[i – 2(n – l)T]]. (13)

The envelope of the pulse reflection response can now be

plotted by addition of replicas of the applied envelope

reduced in amplitude and displaced in time as given by

(12) or (13). This has been done in Fig. 2 for an applied

rectangular pulse 40T long. The dashed lines indicate

the component echoes which add to give the resulting

waveshape, indicated by the lined areas, for the reflected

wave. Fig. 2 is for a four-step binomial transformer, but

the curves do not differ appreciably from those for a

four-step Tchebycheff transformer.

DETERMINATION OF TRANSMITTED RESPONSE

The time-domain transmission characteristic of the

step transformer has also been determined by following

a unit impulse and its significant reflections through the

transformer. The unit impulse d(t) is applied at Step 1

of Fig. 1. As the impulse travels to the right, it is

changed by the voltage transmission coefficient ?k

at each step, and sets up a reflection traveling to the left

at each step. Each such reflection is partially reflected

again from each step to the left of the step at which it

originated. Such re-reflections travel to the right, being

changed by ~~ and setting up smaller reflections as each

step is passed, and eventually emerge from the right-

hand port. The multiple reflections emerging on the

right are of the magnitude of (p~p J, (p~pl)z, (p~Pl)3, and

so on. As (P~pl) is much less than unity for practical

transformers, terms of order (PJ,PJ2 and greater were

neglected. Also, products in ~i~~ were approximated by

unity. Assuming an applied pulse of the form g(t) = e(t)

sin uot,as was done for the reflected response, the trans-

mitted response Gt(t) can be given in terms of

( ){
n

e’(t) = ~ h e[t– (n — l)Tj
1

‘(94e”- ‘n+l)T

-(:3’m’m-’)e”- ‘n+3)T’

(
+ (– 1)’ ~ %4%-d

,Z=dd 1 )

+ . . .

.e[t — (n + 2d — l)T] + etc.
}

(14)

where

e’(t) = the output envelope function

G,(t) = (cos~d)e’(t) for n = 4, 8, 12, . . .

G,(t) = – (COS tid)e’(t) fern = 2,6, 10,...

G,(L) = (sin aof)e’(t) for n = 5,9, “13, .00

G,(t) = – (sin tid)e’(t) for n = 3, 7,, 11, . . . . (15)

Fig. 2 also shows the envelope of the transmitted re-

sponse of a four-step, binomial, stepped transformer for

an applied rectangular pulse. The pulse width chosen,

40 T, is equivalent to ten cycles of the carrier frequency.

The response of a stepped transformer designed on

other than a binomial basis would still have features

similar to those of the response shown. Fig. 3 has been

plotted to show the pulse response of a stepped trans-

former to the pulse envelope V(t) = sinl/2 (qrt/40 T), for

O<t540 T. The transformer used in computing this re-

sponse was a four-step Tchebycheff design with a 2:1

bandwidth ratio and 3:1 transformation ratio.

Stepped transformers, and other transmission-line

components, have discontinuity reactance that are

usually considered to be lumped capacitance or in-

ductance, and thus, such a component might not be

‘+/ ‘sin” y’”:->
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Fig. 3—Response of a four-step stepped transmission-line
transformer to applied rounded pulse.
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considered suited to pulse analysis by this method. How-

ever, it can be shown that reasonably small discontinu-

ity reactance or susceptances, such as are met with in ac-

tual components, can be closely approximated by short

lengths of nondispersive transmission line, if they are

not so small as to be negligible. Thus, discontinuity

reactance are not often a serious limitation in pulse

analysis by this method.

PULSE DISTORTION IN A BACKWARD-

COUPLING HYBRID

A backward-coupling hybrid7–10 is a symmetrical

four-port network that divides RF power incident at a

given port approximately equally between the port ad-

jacent to and the port collinear with the input port,

leaving the diagonally opposite port isolated, as shown

in Fig. 4. The impulse responses are given in an article

by Oliver,7 and, thus, the pulse responses can be deter-

mined directly. They are:

; (t) = pg(t) – p(l – p’) [g(t – 2T)

+ o’g(t – 47’) + .o’g(t – 6T) + 0.. ]

; (t) = (1 – ,o’)[g(t – T)

+ p’g(i – 3T) + p’g(t – ST) + . . . ] (16)

for an input pulse applied at port 1 of Fig. 4. In these

formulas, T is the time required for a unit impulse to

traverse the length of the coupler, and p is defined by

1–<1–T2

“=l+ <l-k”
(17)

where k is the midband amplitude coupling factor

V,/ V1. For balanced output, k has the value @/2, and

so each term in the brackets of (16) is about 15.35 db

down from the preceding term. Thus, only the first few

terms have significance in determining pulse distortion.

PULSE DISTORTION IN A BACKWARD-COUPLING

HYBRID USED AS A SUM-AND-DIFFERENCE

NETWORK

To consider the backward-coupling hybrid as a sum

and difference network, one input port will be Port 1’

of Fig. 4, located a distance 1= A/4 at the design-center

frequency out from Port 1. This has the effect of delay-

ing both output signals from (16) by an additional time

? B. M. Oliver, ‘(Directional electromagnetic couplers, ” PROC.
IRE, vol. 42, pp. 1686-1692; November, 1954.

s S. B. Cohn, P. M. Sherk, J. K. Shimizu, and E. M. T. Jones,
“Strip Transmission Lines and Components, ” Stanford Res. Inst.,
Menlo Park, Calif., Final Rept., SRI Project 1114, Contract DA 36-
039 SC 63232. DA Proiect 3-26 -00-600,SC Proiect 2006A: Februarv.
1957. -

.

‘ J. K. Shimizu, “Strip-line 3-db directional couplers, ” 1957
IRE WESCON CONVENTION RECORD, pt. 1, pp. 4-9.

10J. K. Shimizu and E. M. T. Jones, “Coupled-transmission-line
directional couplers, ” IRE TRANS. ON MICROWAVE THEORY AND
TECHNIQUES, vol. MTT-6, pp. 403411; October, 1958.

(a)

(b)

‘~”
+1’ I 4 I-A

(c)

Fig. 4—The backward-coupling hybrid. (a) Physical appearance of
conducting center strips. (b) Functional diagram. (c) As a sum-
and-difference network.

T. Now, let identical signals, g(t), be applied at Ports 1’

and 3 at the same instant. By symmetry and superposi-

tion, the total signals from Port 2, designated Hz(t), and

Port 4, designated H’(t), are

(18)

Solutions of (18) in terms of the parameters of (16)

yield

H,(t) = (1 + p – p’)g(t – T) – p(l – P)(1 – p’)

“[g(f - 3~) +P’g(t - 5T) +P’g(t - 7T) + ~ . ~ ]

H’(t) = pg(t) + (1 - p)(l – p’)[g(t – 2T)

+ P’g(t – 4T) + P’g(t – 6T) + “ “ “ ] (19)

where Hz(t) is the Z output, and H’(t) the A output.

As with the stepped transformers, let g(t) = e(t) sin

coOt, where e(t) is the function describing the envelope

of the input pulse, and wO, the carrier frequency, is the

same as the design-center frequency of the coupler. Us-

ing the trigonometric equalities of (15), (19) becomes

for the sum arm

H2(t) = – cos cdot{(1+ p – p’)e(t – T)

+ P(1 – p)(l – pz)[e(t – 3T)

– p’e(t – ST) + p’e(t – 7t) – . . . 1}, (20)
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Fig. 5—Respons~s of backward-coupling hybrid to
applled rectangular puke.

for the difference arm

H~(t) = sin uot~pe(t) – (1 – P)(1 – p’)[e(t – 223

— pze(t –4T)+p4e(t–6T) –.. 1}.

Substitution of the numerical values (ti~ – 1) for p,

appropriate for 3-db coupling, gives the pulse shapes for

the sum-and-difference arms as

232(;) = – cos u,t~ 1.24e(t – T)

+ 0.20e(t – 3T) – 0.03e(t – ST)}

for the sum arm, and

H,(t) = sin cod{ 0.41e(t) – 0.49e(t – 2T)

+ 0.08e(t – 4T) } (21)

for the difference arm, where terms of higher order than

p’ are omitted, and numbers are rounded off to two

places. Any desired accuracy can be obtained by using

more terms of the general expression carried out to more

decimal places. These equations show that, to the ap-

proximation used, all the significant echoes have made

their appearance within 4 T after the appearance of the

body of the signal, and have disappeared within 4 T after

the body of the signal has ended.

To illustrate the application of (21), examples of sum-
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Fig. 6—Responses.of backward-coupling hybrid to
apphed rounded pulse.

and-difference pulse responses have been plotted in

Figs. 5 and 6. The 40 T pulse width for the envelopes is

equivalent to ten cycles of the carrier frequency, de-

noted UO in (21).

The terlms of (21) were added graphically. In general,

for a given maximum amplitude of the pulse, the more

slowly the pulse rises and falls, the smaller the maximum

amplitudes of the distorting terms will be. Thus, a

Gaussian-shaped pulse whose maximum slope is less

than the maximum slope of the root-sine pulse de-

scribed above would be expected to have a less-distorted

sum-arm output and a smaller-amplitude difference-

arm output.

THE BRANCH-LINE COUPLER AS A SUM-AND-

DIFFERENCE NETWORK

A coupler well suited to manufacture in strip-line is

the branch-line coupler,ll shown in Fig. 7.

In this section, the frequency response of a certain 3-

db branch-line coupler will be given, along with its

pulse responses. The pulse responses of the sum-and-

difference ports will then be plotted for a number of 3-

db branch-line couplers acting as sun--and-difference

networks, allowing comparison of different designs on a

pulse-response basis.

D J. Reed and G. J. Wheeler, “A method of analysis of symmet-
rical four-port networks, ” IRE TRANS. ON MICROWAVE THEORY AND
TECHNIQUES, vol. MTT-4, pp. 246–252; October, 1956.
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~— 4 3 A

— 1’ + + 1 2 2

+- Ao/4 +

(c)

Fig. 7—The branch-line coupler. (a) Physical appearance of conduct-
ing center strip. (b) Functional diagram. (c) As a sum-and-dif-
ference network.

The admittances of the coupler arms relative to the

feed-line admittance for the 3-db couplers to be con-

sidered in this report are shown in Fig. 8, where each

coupler is assigned an identifying letter (A, B, C, and D,

in order of increasing bandwidth). These couplers are

symmetrical about their centers in all three planes. The

electrical distance between adjacent cross-arms is one-

quarter wavelength at center frequency, as is the length

of each cross-arm. The expressions for the frequency re-

sponses of branch-line couplers are quite formidable,

and are best handled by an electronic computer, such as

the IBM 650.

The pulse responses of these branch-line hybrids were

computed by the following method. The frequency re-

sponses between the applied signal at Port 1 and scat-

tered signals from each of the four ports were deter-

mined by an electronic colmputer using the procedures

of Reed and Wheeler.ll The real parts of the frequency

responses were then taken and their Fourier-series co-

efficients computed, also by machine. The period of the

Fourier series was determined from the physical consid-

eration that the value of the frequency response was the

same at 4f0 as at zero frequency, where f. is the design-

center frequency, for all ports of any of the hybrids.

The inverse of the Fourier series period is the time-

delay parameter denoted T in the section on Method

of Analysis. Thus,

T=~.
4f ,

(22)

This frequency period was used for all the couplers,

and in each case it provided the proper time delay be-

tween signal application at Port 1 and response at any

given port.

It was then necessary only to substitute in (4) to ar-

‘==TT’
10 14142 1.0

1.0 1,0 Lo 1,0

caseBTT7=42
I I I

10 1.0 1.0 1.0

casecI!ErT42
I .0 14142 14142 !,0

‘a=”TTTT4’
!0 1,0 10 $0 1,0

Fig. 8—Relative admittances of arms of 3-db
branch-line couplers.

rive at the time responses of a given coupler to an arbi-

trary pulse. Assuming a pulse-modulated signal of the

form

g(t) = e(t) sin uot

where e(t) is the envelope description

sign-center radian frequency of the

(9)

and WO is the de-

coupler, the re-

sponses of Case B are given below for all terms of ampli-

tude greater than 0.001 (relative to the amplitude of the

applied pulse), and are plotted in Fig, 9 for a rectangular

applied-pulse envelope.

Gl(t) = sin coOt[-O.172e(t) + 0.366e(t – 2T)

– 0.038e(t – 4T) – O.llle(t – 6T)

– 0.046e(t – 8T) – 0.009e(i – 10T)

+ 0.004e(t – 12T) + 0.004e(t – 14T)

+ 0.002e(t – 16T)j.

Gz(t) = – sin od[O.507e(t – 2T) + 0.068e(t – 4T)

+ 0.093e(t – 6T) + 0.041e(t – 8T)

+ 0.008e(t – 10T) – 0.004e(; – 12T)

–0.004e(t – 14T) – 0.002e(t – 16T)].
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The addition of a quarter-wavelength of line to one

input port makes a sum-and-difference network of the

branch-line hybrid. With reference to Fig, 7, assume

that identical signals are applied at Ports 1.’ and 4 simul-

taneously. By simple superposition, signal fill(t), emerg-

ing at Port 1‘, signal E?z(t), emerging at Port 2, and so

.L~ I/l(t) = Gl(t – 2T) + G,(t – ~)

~m

~,(t) = G2(t – T) + G3(t)

05
DIAGONAL ARM WAVEFORM

x ,.s .Ot G3[t) Hs(t) = G,(t) + G3(t – T)

v
Hi(t) = G,(t) + G4(~ – T) (25)

0
because the signal takes a time interval T to travel one-

“:[,:.O: , ~A:AcENT4,,wA,,FoRM

quarter wavelength at the center frequency. Hz(t) is

the sum response and Hs (t)is the difference response.

The following are given for the branch-line hybrid Case

0 IOT 20T 30T 40T 30T B, assuming the signal to be e(t)sin ad, as before:
TIME

Fig. 9—Responses of 3-db branch-line coupler (Case B) to applied Hi(t) = sin coOt[-O.l12e(t – 2T) – O.10le(t – 4T)

rectangular pulse. (Subscripts refer to port designations applied
at Port 1.) + 0.098e(t – 6T) + O.llOe(t – 8T)

G,(t) = cos c@[O.613e(t – 3T) + 0.130e(t – 52’)

+0.005e(t – 7T) – 0.023e(t – 9T)

— 0.015e(t – llT) – 0.005e(t – 13T)].

Gl(t) = cos @[-0,284e(t – T) + 0.265e(t – 3T)

+ 0.060e(t – ST) – 0.001e(t – 7T)

– 0.022e(t – 9T) – 0.014e(t – llT)

– 0.005e(t – 13T) – 0.000e(t – 15T)

+ 0.001e(f – 1723]. (23)

These responses apply only when the applied frequency

is exactly the same as the design-center frequency of the

coupler. For a small change in applied frequency, the

phase of the carrier of each replica is displaced by a small

angle from that of the preceding replica, so that the

replicas will no longer add exactly in phase. The equa-

tions of (23) can be modified to include the effect of such

a change in frequency from the design-center frequency,

COO,to a new frequency, CO., by removing the sin uot [or

cos cod]preceding the brackets and multiplying each

term within the brackets by a factor sin (ti,t– @) [or

cos (cwt — n~) ] where n is the same integer as in the term

(t – nT) giving the envelope displacement for that rep-

+ 0.024e(t – 10T) – 0.005e(t – 12T)

– 0.009e(t – 142’) – 0,004e(t – 16T)

— 0.001e(t – 18T)].

Hz(t) = cos tid[l.120e(t – 3T) + 0.199e(t – ST)

+ 0.097e(t – 7T) + 0.018e(t -- 9T)

– 0.006e(t – llT) – 0.008e(t – 13T)

— 0.004e(t – 1ST) – 0.002e(~ – 17T)].

H,(t) = sinqt[-O.507e(t – 2T) + 0.!j45e(t – 4T)

+ 0.038e(t – 6T) – 0.036e(t – 8T)

– 0.032e(t – 10T) – O.Olle(t – 12T)

— 0.001e(t – 14T) + 0.002e(t – 16 T)]

II,(t) = sin uOt[– O.172e(t) + 0.082e(t – 2T)

+ 0.227e(t – 42’) – 0.051e(t – 623

– 0.047e(t – 8T) – 0.031e(t – 10T)

– O.OIOe(t – 12T) – 0.001e(t – 14T)

+ 0.002e(t – 16T)]. (26)

Figs. 10–1 3 show the sum-and-difference responses to

a rectangular, pulse-modulated signal of the four

branch-line couplers (Cases A, B, C, and D). It is in-

teresting that the transients in the reslponse curves for
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the branch-line couplers and the sum-and-difference

networks are of appreciable magnitude for only three

cycles or less of the carrier frequency. Thus, in passing

through these components, pulses only three cycles

long, or spaced from each other by only three cycles, re-

tain their general shape and identity.

CONCLUSION

It has been shown that the pulse responses of micro-

wave components, made of nondispersive transmission

lines only, are sums of replicas of the applied pulse. Two

different ways were described by which the amplitudes

and times of occurrence of the individual replicas can be

found from the component frequency responses or im-

pulse responses.

This technique for finding pulse responses was applied

to stepped transmission-line transformers, to the back-

ward coupler as a hybrid and sulm-and-cliflerence net-

works, and to branch-line couplers as hybrids and sum-

and-difference networks. I t was found that rectangular-

pulse envelopes lasting for only three periods of the car-

rier frequency would pass through any one of these com-

ponents without extreme distortion.
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Sets of Ei~envectors for Volumes of Revoluticm*
u

J. VAN BLADELf

Summary—The electric and magnetic eigenvectors of a volume

of revolution can be written in terms of two-dimensional scalar and
vector functions. These functions are the eigenfunctions of certain

linear transformations in the meridian plane. The form of the trans-

formation is examined, and much attention is devoted to the or-

thogonality properties of their eigenfunctions and the calculation of
their eigenvalues from variational principles.

AMONG the sets of eigenvectors which exist in a

finite three-dimensional volume, the “electric”

and “magnetic” modes are of particular im-

portance for the calculation of electric and magnetic

fields. The purpose of the present paper is to investigate

the properties of these modes in volumes of revolution

of the kind depicted in Fig. 1. An explicit mathematical

expression can be given for the modes of a few simple

* Manuscript received by the PGMTT, September 22, 1959; re-
vised manuscript received, October 11, 1959. Research supported by
the Atomic Energy Commission, Contract No. AT( 11-1)-384.

T Dept. of Electrical Engineering, University of Wisconsin, Madi-
son, Wis.

volumes, such as the sphere and the coaxial cylinder,

but in the most general case one has to resort to ap-

proximate procedures to obtain quantitative data. The

most frequently used methods rely on the replacement

of differential equations by difference equations, and

on the use of variational principles for the calculation

of eigenvalues. It is necessary, for a systematic applica-

tion of these methods, to possess a precise classification

and enumeration of the modes and their characteristics.

This is what this paper, inspired by a previous analysis

by Bernier,l sets out to provide.

The first structure to be examined will be the toroidal

volume of Fig. 1 (a), which is of importance for circular

particle accelerators and, more generally, for ring-like

structures through which particles or fluids are flowing.

The fact tha~ a toroidal volume does not contain any

portion of the axis of revolution facilitates the nlathe-

matical formulation of the problem.

1 J. Bernier, ‘[On electromagnetic resonators, ” Onde 61ed., vol.
26, pp. 305–317; August–September, 1946.


