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Analysis of Certain Transmission-Line
Networks in the Time Domain*

W. J. GETSINGER}

Summary-—Many linear components in nondispersive transmis-
sion line are made up solely of commensurate lengths of line of vari-
ous characteristic impedances. Such components have impulse re-
sponses that are a series of equispaced impulses, and, as a result,
their frequency responses can be written as a Fourier series. Given
the period and coefficients of the Fourier series describing the
frequency response, the time response of the circuit to any pulse can
be written down immediately as a sum of replicas of the applied pulse,
each replica having an amplitude given by the coefficient of a term in
the series, and occurring at a time determined by the period of that
term of the series.

The pulse responses of stepped transmission-line transformers,
backward-coupling hybrids, and branch-line hybrids are determined
and, after assuming a simple applied-pulse shape, are plotted.

INTRODUCTION

HE use of millimicrosecond pulses requires com-
Tponent bandwidths that can be achieved only in

the microwave frequency range. Since the usual
problem is to keep pulse distortion as small as possible,
nondispersive transmission lines, such as coaxial and
strip transmission lines, have an advantage over dis-
persive lines, such as waveguide.

Many useful TEM transmission-line components con-
tain no frequency-sensitive elements other than lengths
of line. When a network has these properties, its re-
sponses to an applied pulse of any shape can be deter-
mined by making an arithmetic summation of replicas
of the applied pulse, each differing from the next only
in amplitude and displacement in time. This process
avoids the difficulty of integrating with each applied-
pulse shape separately to determine the response.

METHOD OF ANALYSIS

Given a network of steady-state frequency response
f(w), and an input pulse, expressed in time as g(#), it is
desired to find the output pulse G(¥) from the net-
work.!™* If the network is made up entirely of com-
mensurate lengths of nondispersive transmission lines,
its frequency response f(w) can be expanded (by meth-

* Manuscript received by the PGMTT, October 9, 1959; revised
manuscript received, November 30, 1959. This work was supported
by %16 International Business Machines Corp., Yorktown Heights,
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ods to be described later) as an infinite series of the form

J@) = 3 bt

n=0

ey

where by is a coefficient specifying magnitude, w is
radian frequency, and 7 is a specific time interval de-
pending on the particular microwave component being
analyzed. The Fourier integral,

o= [ " f@)etde,

~—Q

@)

where £ is time, can be used to transform f(w) into the
time domain. When (2) is applied to (1), the result is

) = 3 85 = nT)

n=0

3)

where 6(t—n»T) is a unit impulse occurring at time
t=nT. This is the network impulse response, and is seen
to consist of a series of impulses. The response G(£) of the
network to an applied pulse g(#) is found by convolving
f(®) and g(¢). Convolution is described by
t
60 = [ e@st—0a = g0 1) @
0

where G(¢) is the network response, and 0 is merely a
variable of integration. The lower limit is zero because
the input pulse g(f) is assumed to be zero before £=0.

Substituting (3) into (4) gives the response of the
network to g(t) as

G(t) = bog(t) + biglt — T) + bog(t — 27) + - - (5)

because convolution with an impulse yields a replica of
the given function.

Comparison of (§) with (1) shows that if the factor T'
and the coefficients b; of the frequency response of the
network are known, then the response of the network to
any pulse can be written down immediately as a series
of replicas of the applied pulse.

The frequency response of a network is usually given
in closed form, and it is necessary to expand it in order to
find the pulse response. The frequency response (1) is
periodic with a period 2m/7T, and its real part is an even
function; thus, the real part of the given frequen-y re-
sponse can be expanded in a Fourier series as

Re f(w) = b + by cos T + by cos 20T + - - - ()

by well-known analytical or numerical methods. The
coefficients by in (6) may be identified with those in (5),
so that the pulse response of the network is known upon
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.expanding only the real part of its frequency response.

Real-part sufficiency is discussed extensively by Guil-
lemin.?

Another method of determining the coefficients to be
used in (5) is by replacing each ¢=#7 by { in the given
frequency response, and expanding the function in a
power series in { about { =0, using any of the available
methods for determining power series coefficients. The
coefficients of the power series are the same as those of
the Fourier series for the same values of %, as can be de-
termined by replacing each ¢ in the series with e~*T
when the expansion has been made. The substitution is
possible because the networks being considered involve
only commensurate lengths of nondispersive transmis-
sion line as frequency-sensitive elements, and thus the
independent variable can be considered to be (e=*7)
rather than w.

PuLsE RESPONSE OF STEPPED TRANSFORMERS

A properly designed, stepped, transmission-line trans-
former® provides a means of joining two transmission
lines of greatly different characteristic impedances
without incurring a large mismatch. A diagram of the
general step transformer to be discussed is given in Fig.
1. Assumptions made are that the transmission line is
nondispersive, that junction effects can be ignored,
that the physical distance between adjacent steps is the
same for all steps, and that the electrical distance be-
tween adjacent steps is one-quarter wavelength at the
carrier frequency of the applied pulse.

DETERMINATION OF REFLECTED RESPONSE

The time-domain reflected-response characteristic of
the step transformer will be determined by applying a
unit impulse at Step 1 and obtaining the impulse re-
sponse directly. Practical step transformers are usually
well matched, and the reflections from the individual
steps are relatively small, so that for the reflected re-
sponse, signal level can be considered to be the same at
each step, and multiple reflections can be ignored. Sup-
pose a unit impulse reaches the first step at {=0. There
is an immediate reflection at that step. If the time re-
quired for the impulse to advance from one step to the
next is called T, the reflection from the kth step reaches
the first step when ¢t=2k7T. The amplitude of each re-
sponse is the voltage reflection factor p; of that particu-
lar step. Thus, the reflected impulse response from all n
steps can be written as

A0 = X polt — 22 — DT]. 7
k=1

5 E. A, Guillemin, “Computational Techniques which Simplify
the Correlation Between Steady-State and Transient Response of
Filters and Other Networks,” Proc. Natl. Electronics Conf., Chicago,
111, pp. 513-532; 1953,

¢S. B. Cohn, “Optimum design of stepped transmission-line
transformers,” IRE TRANS, ON MICROWAVE THEORY AND TECHNIQUES,
vol. MTT-3, pp. 16-21; April, 1955.
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From the preceding section, the reflected response to
any applied pulse can be written immediately as

G,(t) = Z_) orglt — 2(F — DT]. (8)
Let
¢(t) = e(t) sin wet (9)
and
wol = 7/2 (10)

where ¢(¢) is the time description of the pulse envelope,
and wy is the carrier radian frequency. Also,

T
sin <w0t — —>
2

sin (wol — ) =
. 3r
sin | wof — 7 = Cos wol

sin (wot — 27) = sin wet.

Il

- COS wql

— sin wyl

(11)

Fig. 1—The stepped transmission-line transformer.
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Fig. 2—Response of four-step stepped transmission-line
transformer to applied-rectangular pulse.
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Substitution of (9)-(11) into (8) gives
G.(t) = sin @ot{ f_‘, (—1)¥pe[t — 2(k — 1)T]} . (12)

Expanding for clarity, this becomes
G,(1) = sin wot{pe(t) — pae(t — 2T) + pe(t — 4T) — - - -
| + pnelt — 200 — 1T]}. (13)

The envelope of the pulse reflection response can now be
plotted by addition of replicas of the applied envelope
reduced in amplitude and displaced in time as given by
(12) or (13). This has been done in Fig. 2 for an applied
rectangular pulse 407 long. The dashed lines indicate
the component echoes which add to give the resulting
waveshape, indicated by the lined areas, for the reflected
wave. Fig. 2 is for a four-step binomial transformer, but
the curves do not differ appreciably from those for a
four-step Tchebycheff transformer.

DETERMINATION OF TRANSMITTED RESPONSE

The time-domain transmission characteristic of the
step transformer has also been determined by following
a unit impulse and its significant reflections through the
transformer. The unit impulse 8(¢) is applied at Step 1
of Fig. 1. As the impulse travels to the right, it is
changed by the voltage transmission coefficient 7y
at each step, and sets up a reflection traveling to the left
at each step. Each such reflection is partially reflected
again from each step to the left of the step at which it
originated. Such re-reflections travel to the right, being
changed by 7; and setting up smaller reflections as each
step is passed, and eventually emerge from the right-
hand port. The multiple reflections emerging on the
right are of the magnitude of {(prp1), (prp1)?% (pip1)?, and
so on. As (pre1) is much less than unity for practical
transformers, terms of order (pgo1)? and greater were
neglected. Also, products in 7:7; were approximated by
unity. Assuming an applied pulse of the form g(f) =e(¢)
sin wt, as was done for the reflected response, the trans-
mitted response G(¢) can be given in terms of

et = (ﬁ ?k> {g[t — (n— 1T
+ < i Pmpm—l) e[t — (% 4 1)T|
- < ipmpm‘2>e[t -+ 3T]+ -

+(~1)d< Zn: Pmpm~d>

Mm=d+41

e[t = (n+2d — 1T} + etc.} (14
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where
¢'(t) = the output envelope function
G(t) =  (coswot)e'(t) forn=4,8,12,- -
Gi(1) = — (coswol)e’(t) forn = 2,6,10,: - -
Gi()) = (sinwe)e'(r) form=35,9,13, ..
Gi(t) = — (sin wot)e’(f) form=3,7,11,---. (15)

Fig. 2 also shows the envelope of the transmitted re-
sponse of a four-step, binomial, stepped transformer for
an applied rectangular pulse. The pulse width chosen,
407, is equivalent to ten cycles of the carrier frequency.
The response of a stepped transformer designed on
other than a binomial basis would still have features
similar to those of the response shown. Fig. 3 has been
plotted to show the pulse response of a stepped trans-
former to the pulse envelope V(¢) =sin? (wt/401), for
0<¢<407. The transformer used in computing this re-
sponse was a four-step Tchebycheff design with a 2:1
bandwidth ratio and 3:1 transformation ratio.

Stepped transformers, and other transmission-line
components, have discontinuity reactances that are
usually considered to be lumped capacitance or in-
ductance, and thus, such a component might not be

APPLIED WAVEFORM

v = (sin'/2E ) sin wgt

0<t <407

wT=w/2

025 —
______ REFLECTED WAVEFORM
7 X sin wet T
-~ ~
T T T T T T T e ~
N
ol X ~ -
v N T e e S
N P

~0.25 —

o

TRANSMITTED
WAVEFORM

X cos wot

Fig. 3—Response of a four-step stepped transmission-line
transformer to applied rounded pulse.
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considered suited to pulse analysis by this method. How-
ever, it can be shown that reasonably small discontinu-
ity reactances or susceptances, such as are met with in ac-
tual components, can be closely approximated by short
lengths of nondispersive transmission line, if they are
not so small as to be negligible. Thus, discontinuity
reactances are not often a serious limitation in pulse
analysis by this method.

PurseE DiSTORTION IN A BACKWARD-
CouPLING HYBRID

A backward-coupling hybrid™® is a symmetrical
four-port network that divides RF power incident at a
given port approximately equally between the port ad-
jacent to and the port collinear with the input port,
leaving the diagonally opposite port isolated, as shown
in Fig. 4. The impulse responses are given in an article
by Oliver,” and, thus, the pulse responses can be deter-
mined directly. They are:

Va
7 ) = pg® — p(1 — pM[g(t — 27)
+ 0%t — 4T) + p*g(t — 6T) + - - - |

V4(t)—1 | T
I =1-p)gt~1)

+ p%g(t — 3T) + p%gt — 3T) + - - -] (16)

for an input pulse applied at port 1 of Fig. 4. In these
formulas, T is the time required for a unit impulse to
traverse the length of the coupler, and p is defined by

1 —+/1 = F
IR ey

o’ 1n

where 2 is the midband amplitude coupling factor
Vs/ V1. For balanced output, £ has the value +/2/2, and
so each term in the brackets of (16) is about 15.35 db
down from the preceding term. Thus, only the first few
terms have significance in determining pulse distortion.

PuLsE DISTORTION IN A BACKWARD-COUPLING
HyBrID USED AS A SUM-AND-DIFFERENCE
NETWORK

To consider the backward-coupling hybrid as a sum
and difference network, one input port will be Port 1’
of Fig. 4, located a distance /=\/4 at the design-center
frequency out from Port 1. This has the effect of delay-
ing both output signals from (16) by an additional time

7 B. M. Oliver, “Directional electromagnetic couplers,” Proc.
IRE, vol. 42, pp. 1686-1692; November, 1954.

¢ S. B. Cohn, P. M. Sherk, J. K. Shimizu, and E. M. T. Jones,
“Strip Transmission Lines and Components,” Stanford Res. Inst.,
Menlo Park, Calif., Final Rept., SRI Project 1114, Contract DA 36-
03?7SC 63232, DA Project 3-26-00-600,SC Project 2006A; February,
1957.

? J. K. Shimizu, “Strip-line 3-db directional couplers,” 1957
IRE WESCON ConvENTION RECORD, pt. 1, pp. 4-9.

1 J, K, Shimizu and E. M. T. Jones, “Coupled-transmission-line
directional couplers,” IRE TraNs. oN MICROWAVE THEORY AND
TECHNIQUES, vol. MTT-6, pp. 403—411; October, 1958.
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Fig. 4—The backward-coupling hybrid. (a) Physical appearance of
conducting center strips, (b) Functional diagram. (¢} As a sum-
and-difference network.

T. Now, let identical signals, g(¢), be applied at Ports 1/
and 3 at the same instant. By symmetry and superposi-
tion, the total signals from Port 2, designated H.(#), and
Port 4, designated Hy(z), are

B = - 1)+ 2
2@—?1(15— )+~V:;(¢)

H(i)—E(t)—{—Et—T 18
)= Vl( )- (18)

Solutions of (18) in terms of the parameters of (16)
yield

Hy(t) = 1+ p—pDglt = T) — p(1 — p)(1 — %)
et = 37) + pg(t — ST) + p%gt — TT) + - - - ]
Hiy(t) = pg(®) + (1 = o)A — p®[g(t — 27)
+ p%g(t — AT) + pg(t — 6T) + - - -] (19)

where H(f) is the 2 output, and Hy(s) the A output.

As with the stepped transformers, let g(¢) =e(f) sin
wet, where e(t) is the function describing the envelope
of the input pulse, and wy, the carrier {requency, is the
same as the design-center frequency of the coupler. Us-
ing the trigonometric equalities of (15), (19) becomes
for the sum arm

Hy(l) = — coswot{ (1 + p — pDe(t — T)
+ p(1 — p)(1 — pA)[e(t — 37T)
— p%(t — ST) + pte(t — 76) — - - - |}, (20)
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Fig. 5—Responses of backward-coupling hybrid to
applied rectangular pulse.

for the difference arm
Hiy(t) = sin wet{pe(t) — (1 — p)(1 — p?)[e(t — 2T)
— p%(l — 4T) + p'e(t — 6T) — -+ + |}.

Substitution of the numerical values (v/2—1) for p,
appropriate for 3-db coupling, gives the pulse shapes for
the sum-and-difference arms as

Hy(f) = — cos wt{1.24e(t — T)

+ 0.20e(t — 37) — 0.03¢(t — 57)}
for the sum arm, and
Hy(f) = sin wot{0.41e() — 0.49(t — 27)

+ 0.08¢(t — 4T)} (21)
for the difference arm, where terms of higher order than
p? are omitted, and numbers are rounded off to two
places. Any desired accuracy can be obtained by using
more terms of the general expression carried out to more
decimal places. These equations show that, to the ap-
proximation used, all the significant echoes have made
their appearance within 47 after the appearance of the
body of the signal, and have disappeared within 47 after
the body of the signal has ended.

To illustrate the application of (21), examples of sum-
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Fig. 6—Responses of backward-coupling hybrid to
applied rounded pulse.

and-difference pulse responses have been plotted in
Figs. 5 and 6. The 407 pulsé width for the envelopes is
equivalent to ten cycles of the carrier frequency, de-
noted w in (21).

The terms of (21) were added graphically. In general,
for a given maximum amplitude of the pulse, the more
slowly the pulse rises and falls, the smaller the maximum
amplitudes of the distorting terms will be. Thus, a
Gaussian-shaped pulse whose maximum slope is less
than the maximum slope of the root-sine pulse de-
scribed above would be expected to have a less-distorted
sum-arm output and a smaller-amplitude difference-
arm output.

TuE BrancH-LINE COUPLER AS A SUM-AND-
DirrERENCE NETWORK

A coupler well suited to manufacture in strip-line is
the branch-line coupler,” shown in Fig. 7.

In this section, the frequency response of a certain 3-
db branch-line coupler will be given, along with its
pulse responses. The pulse responses of the sum-and-
difference ports will then be plotted for a number of 3-
db branch-line couplers acting as sum-and-difference
networks, allowing comparison of different designs on a
pulse-response basis.

11 T, Reed and G. J. Wheeler, “A method of analysis of symmet-
rical four-port networks,” IRE TRANS. ON MICROWAVE THEORY AND
TECHNIQUES, vol. MTT-4, pp. 246-252; October, 1956.
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Fig. 7—The branch-line coupler. (a) Physical appearance of conduct-
ing center strip. (b) Functional diagram. (¢) As a sum-and-dif-
ference network.

The admittances of the coupler arms relative to the

feed-line admittance for the 3-db couplers to be con-
sidered in this report are shown in Fig. 8, where each
coupler is assigned an identifying letter (A, B, C, and D,
in order of increasing bandwidth). These couplers are
symmetrical about their centers in all three planes. The
electrical distance between adjacent cross-arms is one-
quarter wavelength at center frequency, as is the length
of each cross-arm. The expressions for the frequency re-
sponses of branch-line couplers are quite formidable,
and are best handled by an electronic computer, such as
the IBM 650.

The pulse responses of these branch-line hybrids were
computed by the following method. The frequency re-
sponses between the applied signal at Port 1 and scat-
tered signals from each of the four ports were deter-
mined by an electronic computer using the procedures
of Reed and Wheeler.!! The real parts of the frequency
responses were then taken and their Fourier-series co-
efficients computed, also by machine. The period of the
‘Fourier series was determined from the physical consid-
eration that the value of the frequency response was the
same at 4f as at zero frequency, where fo is the design-
center frequency, for all ports of any of the hybrids.

The inverse of the Fourier series period is the time-
delay parameter denoted 7T in the section on Method
of Analysis. Thus,

1

T:E- (22)

This frequency period was used for all the couplers,
and in each case it provided the proper time delay be-
tween signal application at Port 1 and response at any
given port.

It was then necessary only to substitute in (4) to ar-
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Lo 1.4142 1.0
Case A 1o 1.0
[Ke 1.4142 1O
1.0 1.0 1.0 1.0
Case B 0.4142 0.7071 0.4142
1.0 [He] 1.0 1.0
1.0 1.4142 1.4142 1.0
Case C 0.4142 |1.4142 |0.4142
[Ne] 1.4142 l.4t42 1.0
I.O 1.0 1.0 1.0 [Re]
Case D 0.2346 0.5412 0.5412 0.2346
. 10 1.0 1.0 0 L0

Fig. 8-—Relative admittances of arms of 3-db
branch-line couplers.

rive at the time responses of a given coupler to an arbi-
trary pulse. Assuming a pulse-modulated signal of the
form

2(8) = e(f) sin wot 9

where e(?) is the envelope description and wo is the de-
sign-center radian frequency of the coupler, the re-
sponses of Case B are given below for all terms of ampli-
tude greater than 0.001 (relative to the amplitude of the
applied pulse), and are plotted in Fig. 9 for a rectangular
applied-pulse envelope.

Gi(t) = sin wet[—0.172¢(f) + 0.366e(t — 27T)
— 0.038¢(t — 4T) — 0.111e(t — 67)

— 0.046e(1 — 8T) — 0.009¢(; — 107)

+ 0.004e(t — 127) + 0.004e(t — 147)
+ 0.002¢(t — 167)].

G2(1) = — sin wet[0.507¢(t — 2T) + 0.068¢(t — 4T)

+ 0.093e(t — 67) + 0.041e(t — 87)

+ 0.008¢(t — 107) — 0.004e(t — 127)

—0.004e(t — 14T) — 0.002¢(: — 16T)].
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Fig. 9—Responses of 3-db branch-line coupler (Case B) to applied
rectangular pulse. (Subscripts refer to port designations applied
at Port 1.)

Gs(t) = cos wet[0.613e(t — 3T) + 0.130e(t — 57T)
+0.005e(t — 7T) — 0.023¢(t — 97)
— 0.015¢(t — 117) — 0.005¢(t — 137)].
Ga(l) = cos wot[—0.284e(t — T) -+ 0.265¢(1 — 37T)
+ 0.060e(t — 5T) — 0.001e(t — 77)
— 0.022¢(1 — 97) — 0.014e(t — 117)
— 0.005¢(t — 137) — 0.000e(t — 157)

+ 0.001e(r — 177)]. (23)
These responses apply only when the applied frequency
is exactly the same as the design-center {requency of the
coupler. For a small change in applied frequency, the
phase of the carrier of each replica is displaced by a small
angle from that of the preceding replica, so that the
replicas will no longer add exactly in phase. The equa-
tions of (23) can be modified to include the effect of such
a change in frequency from the design-center frequency,
wo, to a new frequency, w., by removing the sin wot [or
cos wot]| preceding the brackets and multiplying each
term within the brackets by a factor sin (w.t—n¢) [or
cos (w.t —n¢) | where n is the same integer as in the term
(t—nT) giving the envelope displacement for that rep-
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lica. The value of phase term ¢ is given by

¢_7r<wc 1)
- 2 [OF] )

The addition of a quarter-wavelength of line to one
input port makes a sum-and-difference network of the
branch-line hybrid. With reference to Fig. 7, assume
that identical signals are applied at Ports 1”7 and 4 simul-
taneously. By simple superposition, signal H1(¢), emerg-
ing at Port 1/, signal H,(?), emerging at Port 2, and so
on, are given by

(24)

H() =Gt —27) + Gt — T)
Hy(t) = Ga(t — T) + Gs(8)
H3(@t) = Go() + Gt — T)
Ho(t) = Gi(t) + Gt — T) (25)

because the signal takes a time interval 7" to travel one-
quarter wavelength at the center frequency. H,(f) is
the sum response and H;(#) is the difference response.
The following are given for the branch-line hybrid Case
B, assuming the signal to be e(¢) sin wot, as before:
Hi(f) = sin wot| —0.112¢(t — 2T) — 0.101e(t — 47)
+ 0.098¢(t — 6T) + 0.110¢(t — 87)
+ 0.024e(t — 107) — 0.005¢(t — 127)
— 0.009¢(t — 14T) — 0.004e(t — 167T)
— 0.001e(t — 18T)].
Ho(t) = cos wt[1.120e(t — 3T) + 0.199¢(1 — 57)
+ 0.097¢(t — 77) + 0.018¢(t — 9T)
— 0.006¢(t — 117) — 0.008¢(: — 137)
— 0.004e(t — 15T) — 0.002¢(t — 17T)].
Hi(t) = sinwot[—0.507e(t — 2T) + 0.545¢(t — 4T)
14 0.038¢(t — 6T) — 0.036¢(t — 8T)
— 0.032¢(1 — 10T) — 0.011e(t — 127)
— 0.001e(t — 147) 4+ 0.002¢(1 — 167)].
Hy(t) = sin wet| —0.172e(f) + 0.082¢(t — 27)
1+ 0.227e(t — AT) — 0.051¢(t — 67)
— 0.047¢(t — 8T) — 0.031e(t — 107)
— 0.010e(t — 127) — 0.00le(z — 147)

4 0.002¢(t — 16T)]. (26)

Figs. 10-13 show the sum-and-difference responses to
a rectangular, pulse-modulated signal of the four
branch-line couplers (Cases A, B, C, and D). It is in-
teresting that the transients in the response curves for
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the branch-line couplers and the sum-and-difference
networks are of appreciable magnitude for only three
cycles or less of the carrier frequency. Thus, in passing
through these components, pulses only three cycles
long, or spaced from each other by only three cycles, re-
tain their general shape and identity.

CONCLUSION

It has been shown that the pulse responses of micro-
wave components, made of nondispersive transmission
lines only, are sums of replicas of the applied pulse. Two
different ways were described by which the amplitudes
and times of occurrence of the individual replicas can be
found from the component frequency responses or im-
pulse responses.

Van Bladel: Sets of Eigenvectors for Volumes of Revolution
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This technique for finding pulse responses was applied
to stepped transmission-line transformers, to the back-
ward coupler as a hybrid and sum-and-difference net-
works, and to branch-line couplers as hybrids and sum-
and-difference networks. It was found that rectangular-
pulse envelopes lasting for only three periods of the car-
rier frequency would pass through any one of these com-
ponents without extreme distortion.
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Sets of Eigenvectors for Volumes of Revolution®

J. VAN BLADEL?

Summary—The electric and magnetic eigenvectors of a volume
of revolution can be written in terms of two-dimensional scalar and
vector functions. These functions are the eigenfunctions of certain
linear transformations in the meridian plane. The form of the trans-~
formation is examined, and much attention is devoted to the or-
thogonality properties of their eigenfunctions and the calculation of
their eigenvalues from variational principles.

finite three-dimensional volume, the “electric”

and “magnetic® modes are of particular im-
portance for the calculation of electric and magnetic
fields. The purpose of the present paper is to investigate
the properties of these modes in volumes of revolution
of the kind depicted in Fig. 1. An explicit mathematical
expression can be given for the modes of a few simple

ﬁMON G the sets of eigenvectors which exist in a

* Manuscript received by the PGMTT, September 22, 1959; re-
vised manuscript received, October 11, 1959. Research supported by
the Atomic Energy Commission, Contract No. AT(11-1)-384.

T“I?_ept. of Electrical Engineering, University of Wisconsin, Madi-
son, Wis.

volumes, such as the sphere and the coaxial cylinder,
but in the most general case one has to resort to ap-
proximate procedures to obtain quantitative data. The
most frequently used methods rely on the replacement
ol differential equations by difference equations, and
on the use of variational principles for the calculation
of eigenvalues. It is necessary, for a systematic applica-
tion of these methods, to possess a precise classification
and enumeration of the modes and their characteristics.
This is what this paper, inspired by a previous analysis
by Bernier,! sets out to provide.

The first structure to be examined will be the toroidal
volume of Iig. 1(a), which is of importance for circular
particle accelerators and, more generally, for ring-like
structures through which particles or fluids are flowing.
The fact that a toroidal volume does not contain any
portion of the axis of revolution facilitates the mathe-
matical formulation of the problem.

1 J. Bernier, “On electromagnetic resonators,” Onde élect., vol.
26, pp. 305-317; August—September, 1946.



